Reg. No. :			
_			

Question Paper Code: 20470

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2022.

Fourth Semester

Electronics and Communication Engineering

EC 8451 — ELECTROMAGNETIC FIELDS

(Common to Electronics and Telecommunication Engineering)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Transform the Cartesian coordinates x = 2, y = 1, z = 3 into spherical coordinates.
- 2. Prove that curl gradient is zero.
- 3. Write down the expression for electric field intensity due to various charge distributions.
- 4. Write Poisson and laplace equation for electric field.
- 5. State biot savart law.
- 6. Calculate force between two wires carrying current of 5 A and 10 A in the same direction are placed with their axis 5 cm apart.
- 7. Find the amplitude of displacement current density inside a capacitor where $\varepsilon r = 600$ and D = $3*10^{-6} \sin (6*10^6 t 3464 \times) a_z \text{ c/m}^2$.
- 8. State faraday's law.
- 9. State poynting theorem.
- 10. Write the relation between reflection coefficient and standing wave ratio.

PART B — $(5 \times 13 = 65 \text{ marks})$

Why coordinate systems are required? Explain in detail about various 11. (a) coordinates systems.

- State and prove divergence and stokes theorem. (b)
- Derive the expression for electric field intensity due to infinite sheet of (a) 12. charge.

Or

- Define electric, dipole and derive an expression for potential of a electric (b) Dipole.
- State amperes law. Derive expression for magnetic field intensity due to solenoid, toroid and coaxial cable using amperes law. (a) 13.

Or

- Show that the inductance of the cable is $L = \mu l/2\pi \ln (b/a)$. (b)
- Derive Maxwell equation in point form, integral form and phasor form/ (a) 14. Harmonically time varying field.

- Derive the expression for electromagnetic wave equation for free space. (b)
- Derive the expression for velocity of a wave when the wave propagates in (a) 15. dielectric medium.

Or

Derive transmission and reflection coefficient for the plane waves that (b) incident oblique on Dielectric boundary.

PART C — $(1 \times 15 = 15 \text{ marks})$

Four point charges of 5 μC are placed in free space at the point (2, 0,0) (-2, 0, 0), (0,2,0), (0,-2,0) m respectively. Determine force on point charge (a) 16. of 30 μ C located at a point (0,0,2).

A capacitor is composed of two parallel sheets separated by a sheet of insulating material 3 mm thick and of relative permittivity $\varepsilon_r=4$. The (b) distance between plates is increased to allow the insertion of a second sheet 5 mm thick and of relevant permittivity ε_{r2} . If the capacitance so formed is 1/3 times of original capacitance calculate ε_{r2} .